Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Desvendando o mistério do volume de um paralelepípedo retângulo

4 participantes

Ir para baixo

Desvendando o mistério do volume de um paralelepípedo retângulo Empty Desvendando o mistério do volume de um paralelepípedo retângulo

Mensagem por Ruds Dom 13 Out - 16:08

Desde que acompanho esse fórum, já me deparei com algumas postagens de usuários que parecem não saber como calcular o volume de um sólido simples como o paralelepípedo retângulo. Isso é matemática de ensino fundamental. Aquela que muitos falam de peito estufado que é "inútil" e que "nunca usará na vida".

Pois bem, esse é o paralelepípedo retângulo:



Desvendando o mistério do volume de um paralelepípedo retângulo 2lctmrl



E seu volume (V) é o resultado de uma continha simples de multiplicação de 3 fatores: comprimento (c), largura (l) e altura (h). Ou seja:


Desvendando o mistério do volume de um paralelepípedo retângulo 10mpq82


Só isso.

Para obter o volume em litros, deve-se usar as medidas em decímetros (dm). Lembrando que 1dm = 10cm. Ou seja, se as medidas estiverem em centímetros, basta dividí-las por 10 para obter a medida em decímetros. Usando esses valores para calcular o volume, o resultado já estará em litros.

Também é possível fazer a conta inversa, e obter uma medida a partir de um volume (V) determinado anteriormente. Nesse caso é necessário escolher o valor de duas medidas, por exemplo altura (h) e comprimento (c). Então, fazendo a conta inversa, será encontrada a largura (l) necessária para alcançar o volume (V) anteriormente determinado.

Ah, a "conta inversa" da multiplicação é a divisão.

Agora todos vão poder calcular o volume de suas caixas "handmade", ou determinar suas medidas a partir de um volume previamente escolhido. Caso ainda hajam dúvidas, sugiro buscar ajuda em livros ou apostilas de matemática e geometria básica (bem básica mesmo).
Ruds
Ruds
FCBR-CT
FCBR-CT

Mensagens : 1158
Localização : Curitiba

Ir para o topo Ir para baixo

Desvendando o mistério do volume de um paralelepípedo retângulo Empty Re: Desvendando o mistério do volume de um paralelepípedo retângulo

Mensagem por allexcosta Dom 13 Out - 17:08

Lembrando de subtrair o "dobro da parede" em cada medida e os cones, drivers ou reforços pra encontrar o volume interno.
allexcosta
allexcosta
Administrador

Mensagens : 52334
Localização : Terra

Ir para o topo Ir para baixo

Desvendando o mistério do volume de um paralelepípedo retângulo Empty Re: Desvendando o mistério do volume de um paralelepípedo retângulo

Mensagem por SILVIAO Dom 13 Out - 22:22

Shocked 


Última edição por SILVIAO em Dom 22 Dez - 11:22, editado 1 vez(es)
SILVIAO
SILVIAO
Membro

Mensagens : 3485
Localização : Limeira

Ir para o topo Ir para baixo

Desvendando o mistério do volume de um paralelepípedo retângulo Empty Re: Desvendando o mistério do volume de um paralelepípedo retângulo

Mensagem por Nando Medeiros Dom 13 Out - 22:50

Bela aula snax 

Vamos estudar pirâmides também? poke 

rsrs
Nando Medeiros
Nando Medeiros
Membro

Mensagens : 873
Localização : Floripa.

Ir para o topo Ir para baixo

Desvendando o mistério do volume de um paralelepípedo retângulo Empty Re: Desvendando o mistério do volume de um paralelepípedo retângulo

Mensagem por Ruds Seg 14 Out - 7:45

^ lol!
Ruds
Ruds
FCBR-CT
FCBR-CT

Mensagens : 1158
Localização : Curitiba

Ir para o topo Ir para baixo

Desvendando o mistério do volume de um paralelepípedo retângulo Empty Re: Desvendando o mistério do volume de um paralelepípedo retângulo

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos